Source file imperative.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
(**************************************************************************)
(*                                                                        *)
(*  Ocamlgraph: a generic graph library for OCaml                         *)
(*  Copyright (C) 2004-2010                                               *)
(*  Sylvain Conchon, Jean-Christophe Filliatre and Julien Signoles        *)
(*                                                                        *)
(*  This software is free software; you can redistribute it and/or        *)
(*  modify it under the terms of the GNU Library General Public           *)
(*  License version 2.1, with the special exception on linking            *)
(*  described in file LICENSE.                                            *)
(*                                                                        *)
(*  This software is distributed in the hope that it will be useful,      *)
(*  but WITHOUT ANY WARRANTY; without even the implied warranty of        *)
(*  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                  *)
(*                                                                        *)
(**************************************************************************)

open Sig
open Blocks

module type S = sig

  (** Imperative Unlabeled Graphs *)
  module Concrete (V: COMPARABLE) :
    Sig.I with type V.t = V.t and type V.label = V.t and type E.t = V.t * V.t
                                                     and type E.label = unit

  (** Abstract Imperative Unlabeled Graphs *)
  module Abstract(V: sig type t end) :
    Sig.IM with type V.label = V.t and type E.label = unit
                                   and type E.label = unit

  (** Imperative Labeled Graphs *)
  module ConcreteLabeled (V: COMPARABLE)(E: ORDERED_TYPE_DFT) :
    Sig.I with type V.t = V.t and type V.label = V.t
                              and type E.t = V.t * E.t * V.t and type E.label = E.t

  (** Abstract Imperative Labeled Graphs *)
  module AbstractLabeled (V: sig type t end)(E: ORDERED_TYPE_DFT) :
    Sig.IM with type V.label = V.t and type E.label = E.t

end

module I = Make(Make_Hashtbl)

type 'a abstract_vertex = { tag : int; label : 'a; mutable mark : int }

(* Implement module type [MARK]. *)
module Make_Mark
    (X: sig
       type graph
       type label
       val iter_vertex : (label abstract_vertex -> unit) -> graph -> unit
     end) =
struct
  type vertex = X.label abstract_vertex
  type graph = X.graph
  let get v = v.mark
  let set v m = v.mark <- m
  let clear g = X.iter_vertex (fun v -> set v 0) g
end

(* Vertex for abstract imperative graphs:
   comparing to vertex for abstract **persistent** graphs, marks are added. *)
module AbstractVertex(V: sig type t end) = struct
  type label = V.t
  type t = label abstract_vertex
  let compare x y = Stdlib.compare x.tag y.tag
  let hash x = x.tag
  let equal x y = x.tag = y.tag
  let label x = x.label
  let create l =
    if !cpt_vertex = first_value_for_cpt_vertex - 1 then
      invalid_arg "Too much vertices";
    incr cpt_vertex;
    { tag = !cpt_vertex; label = l; mark = 0 }
end

module Digraph = struct

  module Concrete(V: COMPARABLE) = struct
    include I.Digraph.Concrete(V)
    let add_vertex g v = ignore (add_vertex g v)
    let add_edge g v1 v2 = ignore (add_edge g v1 v2)
    let remove_edge g v1 v2 = ignore (remove_edge g v1 v2)
    let remove_edge_e g e = ignore (remove_edge_e g e)
    let add_edge_e g e = ignore (add_edge_e g e)
    let remove_vertex g v =
      if HM.mem v g then begin
        ignore (HM.remove v g);
        HM.iter (fun k s -> ignore (HM.add k (S.remove v s) g)) g
      end
  end

  module ConcreteLabeled(V: COMPARABLE)(E: ORDERED_TYPE_DFT) = struct
    include I.Digraph.ConcreteLabeled(V)(E)
    let add_vertex g v = ignore (add_vertex g v)
    let remove_edge g v1 v2 = ignore (remove_edge g v1 v2)
    let remove_edge_e g e = ignore (remove_edge_e g e)
    let add_edge_e g e = ignore (add_edge_e g e)
    let add_edge g v1 v2 = ignore (add_edge g v1 v2)
    let remove_vertex g v =
      if HM.mem v g then begin
        ignore (HM.remove v g);
        let remove v = S.filter (fun (v2, _) -> not (V.equal v v2)) in
        HM.iter (fun k s -> ignore (HM.add k (remove v s) g)) g
      end
  end

  module ConcreteBidirectional(V: COMPARABLE) = struct

    include I.Digraph.ConcreteBidirectional(V)

    let add_vertex g v = ignore (add_vertex g v)
    let add_edge g v1 v2 = ignore (add_edge g v1 v2)
    let add_edge_e g (v1, v2) = add_edge g v1 v2

    let remove_edge g v1 v2 = ignore (remove_edge g v1 v2)
    let remove_edge_e g e = ignore (remove_edge_e g e)

    let remove_vertex g v =
      if HM.mem v g then begin
        iter_pred_e (fun e -> remove_edge_e g e) g v;
        iter_succ_e (fun e -> remove_edge_e g e) g v;
        ignore (HM.remove v g)
      end

  end

  module ConcreteBidirectionalLabeled(V:COMPARABLE)(E:ORDERED_TYPE_DFT) = struct

    include I.Digraph.ConcreteBidirectionalLabeled(V)(E)

    let add_vertex g v = ignore (add_vertex g v)
    let add_edge g v1 v2 = ignore (add_edge g v1 v2)
    let add_edge_e g (v1, l, v2) = ignore (add_edge_e g (v1, l, v2))

    let remove_edge g v1 v2 = ignore (remove_edge g v1 v2)
    let remove_edge_e g e = ignore (remove_edge_e g e)

    let remove_vertex g v =
      if HM.mem v g then begin
        iter_pred_e (fun e -> remove_edge_e g e) g v;
        iter_succ_e (fun e -> remove_edge_e g e) g v;
        ignore (HM.remove v g)
      end

  end

  module Abstract(V: sig type t end) = struct

    include I.Digraph.Abstract(AbstractVertex(V))

    let add_vertex g v =
      if not (HM.mem v g.edges) then begin
        g.size <- Stdlib.succ g.size;
        ignore (G.unsafe_add_vertex g.edges v)
      end

    let add_edge g v1 v2 =
      add_vertex g v1;
      add_vertex g v2;
      ignore (unsafe_add_edge g.edges v1 v2)

    let add_edge_e g (v1, v2) = add_edge g v1 v2

    let remove_vertex g v =
      if HM.mem v g.edges then
        let e = g.edges in
        ignore (HM.remove v e);
        HM.iter (fun k s -> ignore (HM.add k (S.remove v s) e)) e;
        g.size <- Stdlib.pred g.size

    module Mark =
      Make_Mark
        (struct
          type graph = t
          type label = V.label
          let iter_vertex = iter_vertex
        end)

    let remove_edge g v1 v2 = ignore (remove_edge g v1 v2)
    let remove_edge_e g e = ignore (remove_edge_e g e)

  end

  module AbstractLabeled(V: sig type t end)(Edge: ORDERED_TYPE_DFT) = struct

    include I.Digraph.AbstractLabeled(AbstractVertex(V))(Edge)

    let add_vertex g v =
      if not (HM.mem v g.edges) then begin
        g.size <- Stdlib.succ g.size;
        ignore (G.unsafe_add_vertex g.edges v)
      end

    let add_edge_e g (v1, l, v2) =
      add_vertex g v1;
      add_vertex g v2;
      ignore (unsafe_add_edge g.edges v1 (v2, l))

    let add_edge g v1 v2 = add_edge_e g (v1, Edge.default, v2)

    let remove_vertex g v =
      if HM.mem v g.edges then
        let remove s =
          S.fold
            (fun (v2, _ as e) s -> if not (V.equal v v2) then S.add e s else s)
            s S.empty
        in
        let e = g.edges in
        ignore (HM.remove v e);
        HM.iter (fun k s -> ignore (HM.add k (remove s) e)) e;
        g.size <- Stdlib.pred g.size

    module Mark =
      Make_Mark
        (struct
          type graph = t
          type label = V.label
          let iter_vertex = iter_vertex
        end)

    let remove_edge g v1 v2 = ignore (remove_edge g v1 v2)
    let remove_edge_e g e = ignore (remove_edge_e g e)

  end

end

module Graph = struct

  module Concrete(V: COMPARABLE) = struct

    module G = struct include Digraph.Concrete(V) type return = unit end
    include Blocks.Graph(G)

    (* Redefine the [add_edge] and [remove_edge] operations *)

    let add_edge g v1 v2 =
      if not (mem_edge g v1 v2) then begin
        G.add_edge g v1 v2;
        assert (G.HM.mem v1 g && G.HM.mem v2 g);
        ignore (G.unsafe_add_edge g v2 v1)
      end

    let add_edge_e g (v1, v2) = add_edge g v1 v2

    let remove_edge g v1 v2 =
      G.remove_edge g v1 v2;
      assert (G.HM.mem v1 g && G.HM.mem v2 g);
      ignore (G.unsafe_remove_edge g v2 v1)

    let remove_edge_e g (v1, v2) = remove_edge g v1 v2

  end

  module ConcreteLabeled (V: COMPARABLE)(Edge: ORDERED_TYPE_DFT) = struct

    module G = struct
      include Digraph.ConcreteLabeled(V)(Edge)
      type return = unit
    end
    include Blocks.Graph(G)

    (* Redefine the [add_edge] and [remove_edge] operations *)

    let add_edge_e g (v1, l, v2 as e) =
      if not (mem_edge_e g e) then begin
        G.add_edge_e g e;
        assert (G.HM.mem v1 g && G.HM.mem v2 g);
        ignore (G.unsafe_add_edge g v2 (v1, l))
      end

    let add_edge g v1 v2 = add_edge_e g (v1, Edge.default, v2)

    let remove_edge g v1 v2 =
      G.remove_edge g v1 v2;
      assert (G.HM.mem v1 g && G.HM.mem v2 g);
      ignore (G.unsafe_remove_edge g v2 v1)

    let remove_edge_e g (v1, l, v2 as e) =
      G.remove_edge_e g e;
      assert (G.HM.mem v1 g && G.HM.mem v2 g);
      ignore (G.unsafe_remove_edge_e g (v2, l, v1))

  end

  module Abstract(V: sig type t end) = struct

    module G = struct include Digraph.Abstract(V) type return = unit end
    include Blocks.Graph(G)

    (* Export some definitions of [G] *)
    module Mark = G.Mark

    (* Redefine the [add_edge] and [remove_edge] operations *)

    let add_edge g v1 v2 =
      G.add_edge g v1 v2;
      assert (G.HM.mem v1 g.G.edges && G.HM.mem v2 g.G.edges);
      ignore (G.unsafe_add_edge g.G.edges v2 v1)

    let add_edge_e g (v1, v2) = add_edge g v1 v2

    let remove_edge g v1 v2 =
      G.remove_edge g v1 v2;
      assert (G.HM.mem v1 g.G.edges && G.HM.mem v2 g.G.edges);
      ignore (G.unsafe_remove_edge g.G.edges v2 v1)

    let remove_edge_e g (v1, v2) = remove_edge g v1 v2

  end

  module AbstractLabeled (V: sig type t end)(Edge: ORDERED_TYPE_DFT) = struct

    module G = struct
      include Digraph.AbstractLabeled(V)(Edge)
      type return = unit
    end
    include Blocks.Graph(G)

    (* Export some definitions of [G] *)
    module Mark = G.Mark

    (* Redefine the [add_edge] and [remove_edge] operations *)

    let add_edge_e g (v1, l, v2 as e) =
      G.add_edge_e g e;
      assert (G.HM.mem v1 g.G.edges && G.HM.mem v2 g.G.edges);
      ignore (G.unsafe_add_edge g.G.edges v2 (v1, l))

    let add_edge g v1 v2 = add_edge_e g (v1, Edge.default, v2)

    let remove_edge g v1 v2 =
      G.remove_edge g v1 v2;
      assert (G.HM.mem v1 g.G.edges && G.HM.mem v2 g.G.edges);
      ignore (G.unsafe_remove_edge g.G.edges v2 v1)

    let remove_edge_e g (v1, l, v2 as e) =
      ignore (G.remove_edge_e g e);
      assert (G.HM.mem v1 g.G.edges && G.HM.mem v2 g.G.edges);
      ignore (G.unsafe_remove_edge_e g.G.edges (v2, l, v1))

  end

end

module Matrix = struct

  module type S = sig
    include Sig.I with type V.t = int and type V.label = int
                                      and type E.t = int * int
    val make : int -> t
  end

  module Digraph = struct

    module V = struct
      type t = int
      type label = int
      let compare : t -> t -> int = Stdlib.compare
      let hash = Hashtbl.hash
      let equal = (==)
      let create i = i
      let label i = i
    end

    module E = struct
      type t = V.t * V.t
      type vertex = V.t
      let compare : t -> t -> int = Stdlib.compare
      type label = unit
      let create v1 _ v2 = (v1, v2)
      let src = fst
      let dst = snd
      let label _ = ()
    end

    type t = Bitv.t array
    type vertex = V.t
    type edge = E.t

    let create ?size:_ () =
      failwith
        "[ocamlgraph] do not use Matrix.create; please use Matrix.make instead"

    let make n =
      if n < 0 then invalid_arg "[ocamlgraph] Matrix.make";
      Array.init n (fun _ -> Bitv.create n false)

    let is_directed = true

    let nb_vertex = Array.length
    let is_empty g = nb_vertex g = 0
    let nb_edges =
      Array.fold_left (Bitv.fold_left (fun n b -> if b then n+1 else n)) 0

    let mem_vertex g v = 0 <= v && v < nb_vertex g
    let mem_edge g i j = Bitv.get g.(i) j
    let mem_edge_e g (i,j) = Bitv.get g.(i) j
    let find_edge g i j = if mem_edge g i j then i, j else raise Not_found
    let find_all_edges g i j = try [ find_edge g i j ] with Not_found -> []

    (* constructors *)
    let add_edge g i j = Bitv.set g.(i) j true
    let add_edge_e g (i,j) = Bitv.set g.(i) j true

    let remove_edge g i j = Bitv.set g.(i) j false
    let remove_edge_e g (i,j) = Bitv.set g.(i) j false

    let unsafe_add_edge g i j =
      Bitv.unsafe_set (Array.unsafe_get g i) j true
    let unsafe_remove_edge g i j =
      Bitv.unsafe_set (Array.unsafe_get g i) j false

    let remove_vertex _ _ = ()
    let add_vertex _ _ = ()

    let clear g =
      Array.iter (fun b -> Bitv.iteri (fun j _ -> Bitv.set b j false) b) g

    let copy g = Array.init (nb_vertex g) (fun i -> Bitv.copy g.(i))

    (* iter/fold on all vertices/edges of a graph *)
    let iter_vertex f g =
      for i = 0 to nb_vertex g - 1 do f i done

    let iter_edges f g =
      for i = 0 to nb_vertex g - 1 do
        Bitv.iteri (fun j b -> if b then f i j) g.(i)
      done

    let fold_vertex f g a =
      let n = nb_vertex g in
      let rec fold i a = if i = n then a else fold (i+1) (f i a) in fold 0 a

    let fold_edges f g a =
      fold_vertex
        (fun i a ->
           Bitv.foldi_right (fun j b a -> if b then f i j a else a) g.(i) a)
        g a

    (* successors and predecessors of a vertex *)
    let succ g i =
      Bitv.foldi_left (fun l j b -> if b then j::l else l) [] g.(i)

    let pred g i =
      fold_vertex
        (fun j a -> if Bitv.unsafe_get g.(j) i then j :: a else a)
        g []

    (* iter/fold on all successor/predecessor of a vertex. *)
    let iter_succ f g i =
      let si = g.(i) in
      for j = 0 to nb_vertex g - 1 do if Bitv.unsafe_get si j then f j done
    (* optimization w.r.t.
       [Bitv.iteri (fun j b -> if b then f j) g.(i)]
    *)

    let iter_pred f g i =
      for j = 0 to nb_vertex g - 1 do if Bitv.unsafe_get g.(j) i then f j done

    let fold_succ f g i a =
      Bitv.foldi_right (fun j b a -> if b then f j a else a) g.(i) a

    let fold_pred f g i a =
      fold_vertex
        (fun j a -> if Bitv.unsafe_get g.(j) i then f j a else a)
        g a

    (* degree *)
    let out_degree g i = fold_succ (fun _ n -> n + 1) g i 0

    let in_degree g i = fold_pred (fun _ n -> n + 1) g i 0

    (* map iterator on vertex *)
    let map_vertex f g =
      let n = nb_vertex g in
      let f i = (* ensures f is applied exactly once for each vertex *)
        let fi = f i in
        if fi < 0 || fi >= n then invalid_arg "[ocamlgraph] map_vertex";
        fi in
      let v = Array.init n f in
      let g' = make n in
      iter_edges (fun i j -> Bitv.unsafe_set g'.(v.(i)) v.(j) true) g;
      g'

    (* labeled edges going from/to a vertex *)
    (* successors and predecessors of a vertex *)
    let succ_e g i =
      Bitv.foldi_left (fun l j b -> if b then (i,j)::l else l) [] g.(i)

    let pred_e g i =
      fold_vertex
        (fun j a -> if Bitv.unsafe_get g.(j) i then (j,i) :: a else a)
        g []

    (* iter/fold on all labeled edges of a graph *)
    let iter_edges_e f g =
      for i = 0 to nb_vertex g - 1 do
        Bitv.iteri (fun j b -> if b then f (i,j)) g.(i)
      done

    let fold_edges_e f g a =
      fold_vertex
        (fun i a ->
           Bitv.foldi_right (fun j b a -> if b then f (i,j) a else a) g.(i) a)
        g a

    (* iter/fold on all edges going from/to a vertex *)
    let iter_succ_e f g i =
      let si = g.(i) in
      for j = 0 to nb_vertex g - 1 do if Bitv.unsafe_get si j then f (i,j) done

    let iter_pred_e f g i =
      for j = 0 to nb_vertex g - 1 do
        if Bitv.unsafe_get g.(j) i then f (j,i)
      done

    let fold_succ_e f g i a =
      Bitv.foldi_right (fun j b a -> if b then f (i,j) a else a) g.(i) a

    let fold_pred_e f g i a =
      fold_vertex
        (fun j a -> if Bitv.unsafe_get g.(j) i then f (j,i) a else a)
        g a

  end

  module Graph = struct

    module G = struct include Digraph type return = unit end
    include Blocks.Graph(G)

    (* Export some definitions of [G] *)
    let make = G.make

    (* Redefine the [add_edge] and [remove_edge] operations *)

    let add_edge g v1 v2 =
      G.add_edge g v1 v2;
      ignore (G.unsafe_add_edge g v2 v1)

    let add_edge_e g (v1, v2) = add_edge g v1 v2

    let remove_edge g v1 v2 =
      G.remove_edge g v1 v2;
      ignore (G.unsafe_remove_edge g v2 v1)

    let remove_edge_e g (v1, v2) = remove_edge g v1 v2

  end

end

(* Faster implementations when vertices are not shared between graphs. *)
(****
   module UV = struct

   let cpt_vertex = ref min_int

   type ('label, 'succ) vertex = {
    tag : int;
    label : 'label;
    mutable mark : int;
    mutable succ : 'succ;
   }

   module Digraph = struct

    module Abstract(L: ANY_TYPE) :
      Sig.IM with type V.label = L.t and type E.label = unit
    =
    struct

      module rec V :
        VERTEX with type label = L.t and type t = (L.t, S.t) vertex  =
      struct
   type label = L.t
   type t = (L.t, S.t) vertex

   let compare x y = compare x.tag y.tag
   let hash x = Hashtbl.hash x.tag
   let equal x y = x.tag = y.tag
   let label x = x.label

   let create l =
    assert (!cpt_vertex < max_int);
    incr cpt_vertex;
    { tag = !cpt_vertex; label = l; mark = 0; succ = S.empty }
      end
      and S : Set.S with type elt = V.t = Set.Make(V)

      type vertex = V.t

      module E = struct
   type t = V.t * V.t
   type vertex = V.t
   let compare = Stdlib.compare
   type label = unit
   let create v1 _ v2 = (v1, v2)
   let src = fst
   let dst = snd
   let label _ = ()
      end

      type edge = E.t

      type t = {
   mutable vertices : S.t;
      }

      let create ?size () = { vertices = S.empty }
      let is_directed = true
      let is_empty g = S.is_empty g.vertices
      let nb_vertex g = S.cardinal g.vertices
      let out_degree _ v = S.cardinal v.succ
      let clear g = g.vertices <- S.empty

      let add_vertex g v = g.vertices <- S.add v g.vertices
      let mem_vertex g v = S.mem v g.vertices
      let iter_vertex f g = S.iter f g.vertices
      let fold_vertex f g = S.fold f g.vertices
      let succ _ v = S.elements v.succ
      let succ_e _ v = List.map (fun w -> (v, w)) (S.elements v.succ)
      let iter_succ f _ v = S.iter f v.succ
      let iter_succ_e f _ v = S.iter (fun w -> f (v, w)) v.succ
      let fold_succ f _ v acc = S.fold f v.succ acc
      let fold_succ_e f _ v acc = S.fold (fun w acc -> f (v, w) acc) v.succ acc

      let add_edge _ v1 v2 = v1.succ <- S.add v2 v1.succ
      let add_edge_e g (v1, v2) = add_edge g v1 v2
      let mem_edge _ v1 v2 = S.mem v2 v1.succ
      let mem_edge_e g (v1, v2) = mem_edge g v1 v2
      let remove_edge _ v1 v2 = v1.succ <- S.remove v2 v1.succ
      let remove_edge_e g (v1, v2) = remove_edge g v1 v2
      let nb_edges g = fold_vertex (fun v n -> n + S.cardinal v.succ) g 0

      let find_edge g i j = if mem_edge g i j then i, j else raise Not_found
      let find_all_edges g i j = try [ find_edge g i j ] with Not_found -> []

      module Mark = struct
        type graph = t
        type vertex = V.t
        let clear g = S.iter (fun v -> v.mark <- 0) g.vertices
        let get v = v.mark
        let set v m = v.mark <- m
      end
    end

    module AbstractLabeled (V: ANY_TYPE)(E: ORDERED_TYPE_DFT) :
      Sig.IM with type V.label = V.t and type E.label = E.t
    =
    AbstractLabeled
      (V)(struct type t = unit let compare _ _ = 0 let default = () end)

   end

   (**
   module Graph = struct

    module Abstract(V: ANY_TYPE) :
      Sig.IM with type V.label = V.t and type E.label = unit

    module AbstractLabeled (V: ANY_TYPE)(E: ORDERED_TYPE_DFT) :
      Sig.IM with type V.label = V.t and type E.label = E.t

   end
 **)
   end
 ****)

(*
Local Variables:
compile-command: "make -C .."
End:
*)