1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
exception Unreachable
module type G = sig
type t
module V : Sig.COMPARABLE
val pred : t -> V.t -> V.t list
val succ : t -> V.t -> V.t list
val fold_vertex : (V.t -> 'a -> 'a) -> t -> 'a -> 'a
val iter_vertex : (V.t -> unit) -> t -> unit
val iter_succ : (V.t -> unit) -> t -> V.t -> unit
val nb_vertex : t -> int
end
module type I = sig
include G
val empty: unit -> t
val add_edge: t -> V.t -> V.t -> t
end
module type S = sig
type t
type vertex
module S : Set.S with type elt = vertex
type idom = vertex -> vertex
type idoms = vertex -> vertex -> bool
type dom_tree = vertex -> vertex list
type dominators = vertex -> vertex list
type dom = vertex -> vertex -> bool
type sdom = vertex -> vertex -> bool
type dom_frontier = vertex -> vertex list
val compute_idom: t -> vertex -> vertex -> vertex
val dominators_to_dom: ('a -> S.t) -> vertex -> 'a -> bool
val dominators_to_sdom: (vertex -> S.t) -> vertex -> vertex -> bool
val dom_to_sdom: (vertex -> vertex -> bool) -> vertex -> vertex -> bool
val dominators_to_sdominators: (vertex -> S.t) -> vertex -> S.t
val dominators_to_idoms: (vertex -> S.t) -> vertex -> vertex -> bool
val dominators_to_dom_tree:
t ->
?pred:(t -> vertex -> vertex list) -> (vertex -> S.t) -> vertex -> S.t
val idom_to_dom_tree: t -> (vertex -> vertex) -> vertex -> vertex list
val idom_to_idoms: idom -> vertex -> vertex -> bool
val compute_dom_frontier: t -> dom_tree -> idom -> vertex -> vertex list
val idom_to_dominators: ('a -> 'a) -> 'a -> 'a list
val idom_to_dom: (vertex -> vertex) -> vertex -> vertex -> bool
val dom_tree_to_nontrivial_dom : vertex -> dom_tree -> vertex list
val dom_tree_to_snontrivial_dom : vertex -> dom_tree -> S.t
end
module Make(G : G) = struct
type t = G.t
type vertex = G.V.t
module H = Hashtbl.Make(G.V)
module S = Set.Make(G.V)
(** function from [n] to [n]'s immediate dominator *)
type idom = vertex -> vertex
(** [idoms x y] is true when [x] is [y]'s immediate dominator *)
type idoms = vertex -> vertex -> bool
(** function from [x] to a list of nodes immediately dominated by [x] *)
type dom_tree = vertex -> vertex list
(** function from node to a list of nodes that dominate it. *)
type dominators = vertex -> vertex list
(** [dom x y] returns true iff [x] dominates [y] *)
type dom = vertex -> vertex -> bool
(** [sdom x y] returns true iff [x] strictly dominates [y]. *)
type sdom = vertex -> vertex -> bool
(** function from [x] to a list of nodes not dominated by [x], but with
predecessors which are dominated by [x] *)
type dom_frontier = vertex -> vertex list
let set_of_list x = List.fold_left (fun set v -> S.add v set) S.empty x
(** Computes the dominator tree, using the Lengauer-Tarjan algorithm.
[compute_idom cfg s0] returns a function [idom : V.t -> V.t] s.t.
[idom x] returns the immediate dominator of [x]
*)
let compute_idom cfg s0 =
let size = G.nb_vertex cfg in
let bucket = H.create size
and dfnum_h = H.create size
and parent = H.create size
and semi_h = H.create size
and ancestor = H.create size
and best = H.create size
and samedom = H.create size
and idom = H.create size
and vertex = Array.make size s0
and nn = ref 0 in
let dfnum x = try H.find dfnum_h x with Not_found -> raise Unreachable
and semi = H.find semi_h in
let dfs n0 =
let stack = Stack.create () in
let loop () =
while not (Stack.is_empty stack) do
let n,p = Stack.pop stack in
if not (H.mem dfnum_h n) then begin
let enn = !nn in
H.add dfnum_h n enn;
vertex.(enn) <- n;
begin match p with
| Some p -> H.add parent n p
| None -> () end;
nn := enn + 1;
G.iter_succ
(fun m ->
if not (H.mem dfnum_h m) then Stack.push (m, Some n) stack)
cfg n
end
done
in
Stack.push (n0,None) stack;
loop ()
in
let rec ancestor_with_lowest_semi v =
try
let a = H.find ancestor v in
let b = ancestor_with_lowest_semi a in
let () = H.replace ancestor v (H.find ancestor a) in
let best_v = H.find best v in
if dfnum(semi b) < dfnum(semi best_v)
then (H.replace best v b; b)
else best_v
with Not_found -> H.find best v
in
let link p n =
H.replace ancestor n p;
H.replace best n n;
in
let semidominator n =
let s = H.find parent n in
List.fold_left
(fun s v ->
try
let s' =
if dfnum v <= dfnum n
then v
else semi(ancestor_with_lowest_semi v)
in
if dfnum s' < dfnum s then s' else s
with Unreachable ->
s
)
s
(G.pred cfg n)
in
let () = dfs s0 in
let lastn = !nn - 1 in
while decr nn; !nn > 0 do
let i = !nn in
let n = vertex.(i) in
let p = H.find parent n in
let s = semidominator n in
H.add semi_h n s;
H.add bucket s n;
link p n;
List.iter
(fun v ->
let y = ancestor_with_lowest_semi v in
if G.V.equal (semi y) (semi v)
then H.add idom v p
else H.add samedom v y;
H.remove bucket p
)
(H.find_all bucket p)
done;
for i = 1 to lastn do
let n = vertex.(i) in
try
H.add idom n (H.find idom (H.find samedom n))
with Not_found -> ()
done;
H.find idom
(** Given a function from a node to it's dominators, returns a function
[dom : V.t -> V.t -> bool] s.t. [dom x y] returns true when
[x] dominates [y]
*)
let dominators_to_dom dominators x y =
S.mem x (dominators y)
(** Given a function from a node to it's dominators, returns a function
[sdom : V.t -> V.t -> bool] s.t. [sdom x y] returns true when
[x] strictly dominates [y] *)
let dominators_to_sdom dominators x y =
not(G.V.equal x y) && dominators_to_dom dominators x y
let dom_to_sdom dom x y =
not(G.V.equal x y) && dom x y
(** Given a a function from a node to it's dominators, returns a function
from a node to it's strict dominators. *)
let dominators_to_sdominators dominators x =
S.remove x (dominators x)
(** Given a function from a node to it's dominators, returns a function
[idoms : G.V.t -> G.V.t -> bool] s.t. [idoms x y] returns true when
[x] is the immediate dominator of [y].
*)
let dominators_to_idoms dominators =
let sdom = dominators_to_sdom dominators in
(fun x y ->
sdom x y
&& let sdoms = dominators_to_sdominators dominators y in
S.for_all (fun w -> G.V.equal x w || not(sdom x w)) sdoms
)
(** Computes a dominator tree (function from x to a list of nodes immediately
dominated by x) for the given CFG and dominator function.
Note: The dominator tree is also called [IDom] by Muchnick.
Note: If you are computing a post-dominator tree, then the
optional argument pred should be G.succ.
*)
let dominators_to_dom_tree cfg ?(pred=G.pred) dominators =
let idoms = dominators_to_idoms dominators in
let tree = H.create 97 in
let () =
G.iter_vertex
(fun y ->
match pred cfg y with
[x] -> (
if S.is_empty (dominators x) then () else
H.add tree x y
)
| _ -> (
S.iter
(fun x -> if idoms x y then H.add tree x y)
(dominators y)
)
)
cfg
in
fun x -> set_of_list(H.find_all tree x)
(** Computes a dominator tree (function from x to a list of nodes immediately
dominated by x) for the given CFG and idom function. *)
let idom_to_dom_tree cfg idom =
let tree = H.create (G.nb_vertex cfg) in
let () =
G.iter_vertex
(fun v ->
try H.add tree (idom v) v
with Not_found -> ()
)
cfg
in
H.find_all tree
let idom_to_idoms (idom:idom) x y =
try G.V.equal x (idom y)
with Not_found -> false
(** Computes the dominance frontier.
As specified in section 19.1 of Modern Compiler Implementation in ML
by Andrew Appel.
*)
let compute_dom_frontier cfg (dom_tree: dom_tree) (idom: idom) =
let children = dom_tree in
let idoms = idom_to_idoms idom in
let df_cache = H.create 57 in
let df_local n =
List.filter (fun y -> not (idoms n y)) (G.succ cfg n)
in
let rec df n k =
match try Some (H.find df_cache n) with Not_found -> None with
| Some r -> k r
| None ->
let s = df_local n in
add_df_ups s n (fun res -> H.add df_cache n res; k res) (children n)
and add_df_ups s n k = function
| [] -> k s
| c :: chl ->
df c (fun dfc ->
add_df_ups
(List.fold_left
(fun s w -> if idoms n w then s else w :: s) s dfc)
n k chl)
in
fun n -> df n (fun x -> x)
let idom_to_dominators idom x =
let rec d y list =
try
let i = idom y in
d i (i::list)
with Not_found ->
list
in
d x []
let rec idom_to_dom idom x y =
try
let d = idom y in
G.V.equal x d || idom_to_dom idom x d
with Not_found ->
false
let dom_tree_to_nontrivial_dom v dt =
let rec f rs = function
| [] -> rs
| x::xs ->
(match dt x with
| [] -> f rs xs
| ys -> f (x::rs) (List.rev_append ys xs))
in
f [] (dt v)
let dom_tree_to_snontrivial_dom v dt =
let rec f rs = function
| [] -> rs
| x::xs ->
(match dt x with
| [] -> f rs xs
| ys -> f (S.add x rs) (List.rev_append ys xs))
in
f S.empty (dt v)
end
module Make_graph(G: I) = struct
include Make(G)
type dom_graph = unit -> t
type dom_functions = {
idom : idom;
idoms: idoms;
dom_tree: dom_tree;
dominators: dominators;
dom: dom;
sdom: sdom;
dom_frontier: dom_frontier;
dom_graph : dom_graph;
}
let compute_dom_graph cfg dom_tree =
G.fold_vertex (fun p g ->
try
List.fold_left (fun g u -> (G.add_edge g p u)) g (dom_tree p)
with Not_found -> g
) cfg (G.empty ())
(** Computes all dominance functions.
This function computes some things eagerly and some lazily, so don't
worry about it doing extra work to compute functions you don't need,
but also don't call it if you aren't going to use anything it returns.
@return a record containing all dominance functions for the given graph
and entry node.
*)
let compute_all cfg s0 =
let idom = compute_idom cfg s0 in
let idoms = idom_to_idoms idom in
let dom_tree = lazy(idom_to_dom_tree cfg idom) in
let dominators = idom_to_dominators idom in
let dom = idom_to_dom idom in
let sdom = dom_to_sdom dom in
let dom_frontier =
lazy(compute_dom_frontier cfg (Lazy.force dom_tree) idom)
in
{
idom=idom;
idoms=idoms;
dom_tree=(fun x -> Lazy.force dom_tree x);
dominators=dominators;
dom=dom;
sdom=sdom;
dom_frontier=(fun x -> Lazy.force dom_frontier x);
dom_graph=(fun () -> compute_dom_graph cfg (Lazy.force dom_tree));
}
end