1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
module type FLOW = sig
type t
type label
val max_capacity : label -> t
val flow : label -> t
val add : t -> t -> t
val sub : t -> t -> t
val zero : t
val compare : t -> t -> int
end
module type G_GOLDBERG_TARJAN = sig
type t
module V : Sig.COMPARABLE
module E : Sig.EDGE with type vertex = V.t
val nb_vertex : t -> int
val nb_edges : t -> int
val fold_edges_e : (E.t -> 'a -> 'a) -> t -> 'a -> 'a
val fold_succ_e : (E.t -> 'a -> 'a) -> t -> V.t -> 'a -> 'a
val fold_pred_e : (E.t -> 'a -> 'a) -> t -> V.t -> 'a -> 'a
end
module Goldberg_Tarjan
(G: G_GOLDBERG_TARJAN)
(F: FLOW with type label = G.E.label) =
struct
type vertex = G.V.t
type arc = G.E.t
type flow = F.t
let (|>) x f = f x
open G
module Q = PersistentQueue
module VH = Hashtbl.Make(G.V)
module EM = Map.Make(G.E)
module VMap = struct
type 'a t = 'a VH.t
let create = VH.create
let add tbl key value = VH.add tbl key value
let remove tbl key = VH.remove tbl key
let find tbl key =
try Some (VH.find tbl key)
with Not_found -> None
end
module VSet = struct
type t = unit VH.t
let create () = VH.create 16
let add tbl v =
if not (VH.mem tbl v) then VH.add tbl v ()
let elements tbl = VH.fold (fun v () list -> v::list) tbl []
end
module EMap = struct
type 'a t = 'a EM.t ref
let create _ = ref EM.empty
let add map edge value =
map := EM.add edge value !map
let find map edge =
try Some (EM.find edge !map)
with Not_found -> None
end
let min_flow a b = if F.compare a b < 0 then a else b
let (+-) = F.add
let (--) = F.sub
let is_positive a = F.compare a F.zero > 0
let max_capacity e = F.max_capacity (E.label e)
type residual_arc =
| Forward of arc
| Backward of arc
type context =
{
nb_vertices : int;
source : vertex;
sink : vertex;
reversed : bool;
incident : context -> vertex -> residual_arc list;
reverse_incident : context -> vertex -> residual_arc list;
max_capacity : arc -> F.t;
excess : flow VMap.t;
potential : int VMap.t;
mutable excessives : VSet.t;
flow : flow EMap.t
}
let get_excess ctxt vertex =
match VMap.find ctxt.excess vertex with
| Some value -> value
| None -> F.zero
let get_potential ctxt vertex =
match VMap.find ctxt.potential vertex with
| Some value -> value
| None -> 2 * ctxt.nb_vertices
let set_excess ctxt vertex value =
VMap.remove ctxt.excess vertex;
VMap.add ctxt.excess vertex value
let set_potential ctxt vertex pi =
VMap.remove ctxt.potential vertex;
VMap.add ctxt.potential vertex pi
let mark_excessive ctxt vertex =
VSet.add ctxt.excessives vertex
let ctxt =
let in_excess = VSet.elements ctxt.excessives in
ctxt.excessives <- VSet.create ();
in_excess
let get_flow context arc =
match EMap.find context.flow arc with
| Some value -> value
| None -> F.zero
let set_flow context arc value =
EMap.add context.flow arc value
let get_capacity context = function
| Backward arc
| Forward arc -> context.max_capacity arc
let origin : residual_arc -> vertex = function
| Forward arc -> E.src arc
| Backward arc -> E.dst arc
let destination : residual_arc -> vertex = function
| Forward arc -> E.dst arc
| Backward arc -> E.src arc
let forward arc = Forward arc
let backward arc = Backward arc
let residual_capacity : context -> residual_arc -> flow =
fun context residual_arc -> match context.reversed, residual_arc with
| true, Forward arc
| false, Backward arc -> get_flow context arc
| _, Backward arc
| _, Forward arc -> F.sub (context.max_capacity arc) (get_flow context arc)
let is_forward context arc =
is_positive (context.max_capacity arc -- get_flow context arc)
let is_backward context arc =
is_positive (get_flow context arc)
let augment : context -> residual_arc -> F.t -> unit =
fun context residual_arc delta -> match context.reversed, residual_arc with
| true, Backward arc
| false, Forward arc ->
get_flow context arc +- delta |> set_flow context arc
| _, Backward arc
| _, Forward arc ->
get_flow context arc -- delta |> set_flow context arc
let cons e l = e::l
let incidence_residual graph context vertex =
begin
fold_succ_e cons graph vertex []
|> List.filter (is_forward context)
|> List.map forward
end @ begin
fold_pred_e cons graph vertex []
|> List.filter (is_backward context)
|> List.map backward
end
let incidence_reversal graph context vertex =
begin
fold_succ_e cons graph vertex []
|> List.filter (is_backward context)
|> List.map forward
end @ begin
fold_pred_e cons graph vertex []
|> List.filter (is_forward context)
|> List.map backward
end
let generic_bfs :
int ->
(vertex -> residual_arc list) ->
(residual_arc -> unit) ->
vertex -> unit
=
fun nb_vertices incidence iter_fun source ->
let reached = VMap.create nb_vertices in
let frontier = ref Q.empty in
let add_arc arc =
let dest = destination arc in
if VMap.find reached dest = None then
( VMap.add reached dest ();
iter_fun arc;
frontier := Q.add !frontier dest
)
in
let explore vertex = List.iter add_arc (incidence vertex) in
VMap.add reached source ();
explore source;
while not (Q.is_empty !frontier) do
explore (Q.head !frontier);
frontier := Q.tail !frontier
done
let initialize_potential context sink =
let update arc =
get_potential context (origin arc) + 1
|> set_potential context (destination arc)
in
set_potential context sink 0;
generic_bfs
context.nb_vertices
(context.reverse_incident context)
update
sink
exception Break
let is_maximum_preflow context =
let check_arc arc =
if F.compare (get_excess context (destination arc)) F.zero <> 0 then
raise Break
in
try
generic_bfs
context.nb_vertices
(context.reverse_incident context)
check_arc
context.sink;
true
with Break -> false
let push context arc =
let (u,v) = (origin arc, destination arc) in
let exc_u = get_excess context u in
if is_positive exc_u then
begin
let delta = min_flow exc_u (residual_capacity context arc) in
exc_u -- delta |> set_excess context u;
get_excess context v +- delta |> set_excess context v;
augment context arc delta;
mark_excessive context v
end
let relabel context vertex =
context.incident context vertex
|> List.map (fun arc -> get_potential context (destination arc))
|> List.fold_left min (get_potential context vertex)
|> fun pi -> set_potential context vertex (pi+1)
let is_admissible context arc =
let (u,v) = (origin arc, destination arc) in
get_potential context v - get_potential context u = -1
let discharge context vertex =
context.incident context vertex
|> List.filter (is_admissible context)
|> List.iter (push context)
|> fun () ->
if is_positive (get_excess context vertex) then
begin
relabel context vertex;
mark_excessive context vertex
end
let compare_potential context u v =
get_potential context v - get_potential context u
let sort_by_potential context = List.sort (compare_potential context)
let is_dischargeable context v =
v <> context.source
&& v <> context.sink
&& is_positive (get_excess context v)
let augmenting_step context currently_in_excess =
context.excessives <- VSet.create ();
currently_in_excess
|> List.filter (is_dischargeable context)
|> sort_by_potential context
|> List.iter (discharge context)
let param_freq_check_preflow = ref 1000
let compute_max_preflow context =
let nb_steps = ref 0 in
let in_excess = ref (extract_excessives context) in
let check_freq = context.nb_vertices / !param_freq_check_preflow + 1 in
let is_maximum () =
( !in_excess = [] )
|| ( !nb_steps mod check_freq = 0 && is_maximum_preflow context )
in
while not (is_maximum ()) do
augmenting_step context !in_excess;
in_excess := extract_excessives context;
incr nb_steps
done
let init_context context =
let out_source = context.incident context context.source in
initialize_potential context context.sink;
set_potential context context.source context.nb_vertices;
out_source
|> List.map (get_capacity context)
|> List.fold_left F.add F.zero
|> set_excess context context.source;
out_source
|> List.iter (push context);
context
let new_context graph ~source ~sink ~reversed ~max_capacity ~flow =
let nb_vertices = G.nb_vertex graph in
init_context
{ nb_vertices; source; sink; reversed; max_capacity; flow;
incident =
if reversed then incidence_reversal graph
else incidence_residual graph;
reverse_incident =
if reversed then incidence_residual graph
else incidence_reversal graph;
excess = VMap.create nb_vertices;
potential = VMap.create nb_vertices;
excessives = VSet.create ();
}
let maxflow graph source sink =
let init_flow () =
let flow = EMap.create (G.nb_edges graph) in
G.fold_edges_e (fun e () -> EMap.add flow e F.zero) graph ();
flow
in
let forward_context =
new_context graph ~source ~sink
~reversed:false
~max_capacity
~flow:(init_flow ())
in
compute_max_preflow forward_context;
let backward_context =
new_context graph
~source:sink
~sink:source
~reversed:true
~max_capacity:(get_flow forward_context)
~flow:(init_flow ())
in
compute_max_preflow backward_context;
let max_flow_value =
fold_succ_e cons graph source []
|> List.map (get_flow backward_context)
|> List.fold_left F.add F.zero
in
let f e =
match EMap.find backward_context.flow e with
| Some x -> x | None -> F.zero in
f, max_flow_value
end
module type G_FORD_FULKERSON = sig
type t
module V : Sig.HASHABLE
module E : sig
type t
type label
val src : t -> V.t
val dst : t -> V.t
val label : t -> label
end
val iter_succ_e : (E.t -> unit) -> t -> V.t -> unit
val iter_pred_e : (E.t -> unit) -> t -> V.t -> unit
end
module type FLOWMIN = sig
include FLOW
val min_capacity : label -> t
end
module Ford_Fulkerson
(G: G_FORD_FULKERSON)
(F: FLOWMIN with type label = G.E.label) =
struct
module F = struct
include F
type u =
| Flow of F.t
| Infinity
let min x y = match x, y with
| Flow _, Infinity -> x
| Flow fx, Flow fy when F.compare fx fy < 0 -> x
| (Infinity, _) | (Flow _, Flow _) -> y
end
module Mark = struct
module H = Hashtbl.Make(G.V)
type mark = Plus | Minus
let marked = H.create 97
let unvisited = Queue.create ()
let clear () = H.clear marked
let mem = H.mem marked
let set s e tag =
assert (not (mem s));
H.add marked s (e, tag);
Queue.add s unvisited
let get s : G.E.t * mark =
let e, tag = H.find marked s in
(match e with None -> assert false | Some e -> e), tag
let next () = Queue.pop unvisited
end
module Result = struct
module H =
Hashtbl.Make
(struct
open G
type t = E.t
module U = Util.HTProduct(V)(V)
let equal e1 e2 = U.equal (E.src e1, E.dst e1) (E.src e2, E.dst e2)
let hash e = U.hash (E.src e, E.dst e)
end)
let create () = H.create 97
let find = H.find
let flow r e =
try
find r e
with Not_found ->
let f = F.flow (G.E.label e) in
H.add r e f;
f
let change op r e f =
try
H.replace r e (op (find r e) f);
with Not_found ->
assert false
let grow = change F.add
let reduce = change F.sub
end
let is_full r e =
F.compare (F.max_capacity (G.E.label e)) (Result.flow r e) = 0
let is_empty r e =
F.compare (F.min_capacity (G.E.label e)) (Result.flow r e) = 0
let set_flow r s t a =
let rec loop t =
if not (G.V.equal s t) then
let e, tag = Mark.get t in
match tag with
| Mark.Plus -> Result.grow r e a; loop (G.E.src e)
| Mark.Minus -> Result.reduce r e a; loop (G.E.dst e)
in
loop t
let grow_flow r s t a =
let rec loop u b =
if G.V.equal s u then begin
match b with
| F.Infinity ->
assert (G.V.equal s t);
a
| F.Flow f ->
set_flow r s t f;
F.add a f
end else
let e, tag = Mark.get u in
let l = G.E.label e in
match tag with
| Mark.Plus ->
loop
(G.E.src e)
(F.min b (F.Flow (F.sub (F.max_capacity l) (Result.flow r e))))
| Mark.Minus ->
loop
(G.E.dst e)
(F.min b (F.Flow (F.sub (Result.flow r e) (F.min_capacity l))))
in
loop t F.Infinity
let maxflow g s t =
let r = Result.create () in
let succ s =
G.iter_succ_e
(fun e ->
assert (G.V.equal s (G.E.src e));
let t = G.E.dst e in
if not (Mark.mem t || is_full r e) then
Mark.set t (Some e) Mark.Plus)
g s
in
let pred s =
G.iter_pred_e
(fun e ->
assert (G.V.equal s (G.E.dst e));
let t = G.E.src e in
if not (Mark.mem t || is_empty r e) then
Mark.set t (Some e) Mark.Minus)
g s
in
let internal_loop a =
try
while true do let s = Mark.next () in succ s; pred s done;
assert false
with Queue.Empty ->
if Mark.mem t then grow_flow r s t a else a
in
let rec external_loop a =
Mark.clear ();
Mark.set s None Mark.Plus;
let a' = internal_loop a in
if F.compare a a' = 0 then a else external_loop a'
in
let a = external_loop F.zero in
(fun e -> try Result.find r e with Not_found -> F.flow (G.E.label e)), a
end